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Numerical Computation of Satellite Orbits Using the Lie Series Method.

Comparison With Other Methods. by H. Knapp, Electronic Computer Depart-

ment, University of Innsbruck, Austria,

Introduction

Using the Lie series theory the formal solution of the astronomical
n-body problem in a region where no collisions take place, is easy.
It could be demonstrated by a special example (J. Kovalevsky chose
this example to test the Lie series method for celestial mechanics)
that after the transformation given by V. Groebner*> the Lie-series
converge so rapidly that the method in its present form can be suc-
cessfully employed for calculating the orbits in celestial mechanics.
This method of solution is particularly flexible and very general,
and good estimates can be given since the theoretical expansions and

estimations can be directly applied to general multi-body problems.

Chapter 1T

Presentation of the problems

§1 Preparaticn

1) Coordinate system: Our calculations are based on the following
coordinate system: Let the center of mass of the three celegtial bo-
dies be the origin., Due to the vanishingly small mass of the 8th
moon of Jupiter, it lies on the connection line Sun - Jupiter. Let
the x-axis indicate the direction of the ascending node of Jupiter
for the year 1950, let the y-axis be rotated in the direction of
Jupiter motion by 9OO relative to the x-axis in the Jupiter erbital

plane, let the z-axis be directed such that we have an orthogonal

*) See ", Groebner, Die Lie Reihen und ihre Anwendungen, VEB
Deutscher Verlag der Wissenschaften, Berlin 1960, p. 92,
Formel (12.3 e).



right-handed system. This coordinate system is then assumed to‘be an’
iner*tial system since only in such a system Newton's law of gravita-
tion holds in the simple form, This may be regarded as fulfilled with-

'n vhe accuracy of calculation required here (up to and inclusive of

9th significant figure of each step).

2) Tesignations: For reasons of simplicity we use vectors, thus, e.g.

b 4 b . c oL
D= 3Ky vy z; is a position vector
Ind I 3 . .
L= 4, v, w§ is a velocity vector
TR s oxu + yv + zw is the scalar product
- o 5
xt = an +y o+ 22 is the absolute amount
— L r
[x.d = %yw—zv, ZU=XW, xv-yu} is the vector product
(a2 Al th dient symbol
NTTOE AT, R, = is e gradient symbo
Quw kgx’ a8y’ az>} € J
- 2 il ) 2
U = U7+ Ve + W —
ax Ix 8y 2%

Sun Jupiter 8th moon
C o hid - -
onition vectors X X
3 2 1
w0l i 3 e 5y
Do ey 2 1
MU ses M M M
3 2 1
s numbers m m m
3 2 1

L1 the gravitational constant and m, = fMi holds,

A1 gquantities occurring in our calculations are assumed to be
“i1rferentiable, The three celestial bodies, the Sun, Jupiter and its
cighth satellite are assumed to be replaced by mass points which are

‘mbject to gravitation according to Newton's law.
The poritions and velocities

ﬁ
and u




—3-

of the three celestial bodies are given for the initial moment t = t .,
- 3 .

The 18 components of the vectors x; and U, (i =1, 2, 3) are to be

determined as functions of time such that the mass points move accor-

ding to the laws of a three-body problem.

3) Units:
Unit length 1 L =1 astronomical unit = 1495,04200 . 1o1ocm
i unit time 1 d = 1 mean solar day
3 unit velocity 1 Ld—1
unit maso 1 4 = mass of the Sun

In these units the gravitational constant f assumes the numerical value:

f = 0,29591220828559 , 1072 u'1 1 =2 *)

mass numbers: my = 0,295912208 . 102 12 472
m, = ©0,282532864 . 1076 13 472 . my ¢ 1047,355
m, =0 (vanishingly small as compared to m, and m. )
J

4) Equations of motion of the mechenical system: According to the
general theorems of mechanics we obtain the following system of diffe-

*%
rential equations for the three-L_ly problem: )

J\_\
ey
0
vl
)
—~
P
i
N
na
\N
~

(1.1)

\
B rE
— MM 3 _ =
i with U==p) f-= T !xl ~ %!
i<k ik

(the dot denotes differentiation with respect to the time t)
Let the operator belonging to the differential equations (1.1) be

designated by D;

. . . may y Ay Gy T e - S G\ e G WS = A N S e A g St Eed e W SR SER Gen SR G e e S T A SRR A e A S S A G D G P S Gy A Ry R G s W M S S e G S Sy ey S

*) This and all other numerical values are taoken from a paper by
J. Kovalevsky. Since we are concerned with the explanation of the
" method rather than with the values themseclves the problem of their
accuracy is of minor importance.

*¥%¥) See W. Groebner, Die Lie Reihen und ihre Anwendungen, p.71 ff,




Since m, = O it has the following forms

- ey -t
s - - - 3 m, (X,-%, ) m3(x3“‘1>] 3
D = u1 32} + u2 Si} + u3 §§; + r3 + r} ! §§? +
(1.2) 12 13 J
m, (X, -%.) m, (X,-%,)
2 W K L

3 au 3 3u

T 2 T p)

23 23

5) XKnown integrals of the system:
Law of conservation of energy

2

(1.3) B +E -5 058, + 108,%) + U = const, since D(By 4B )=

kin pot

2 3 kin " pot

Law of conservation of angular momentum:

(1.4) P = M, {;2.32] + My F?BJH;‘ = const, since DP = O

Conservation of center of gravity:

— - — .
Xg = (mzx2 + m3x3) with m = m, + mg

Bl

is the position of the center of mass of the threc bodies.

Since D2fs = 0 and owing to the speccial sclection of the coordinate
*

system ES = 0 is volid for 211 times ): the center of gravity rests

in the origin of thec coordinate system. Hence we have:

m 2, + m,X; = O
(1.5) Sc's = 0 and ES =0 or: 2._2 3_‘3
mol, + MUz = 0.
The nine components of the vectors ;%,'ﬁs,.g and the constant energy

(1.3) are the 10 algebraic integrals of the problem. With these to
relations between the 18 unknown components of the vectors';c'i and'ﬁi

(i = 1, 2, 3) the number of unknown functions could bc reduced to cight.
In our example the conservation laws for energy and angular momentum
refer only to the partial problem Sun - Jupiter and permit its complete

integration, Vith the aid of (1.5) however, the six unknown quantitics

*) This choice does not restrict generality. See W. Groebner,
Die Lie Reihen und ihre Anwendungen p. 75




can be easily eliminated and the motion can then be described by only

. . . - -3 -k -~
two position- and two velocity vectors: X and X9 Ug and .

6) Transformation of variables:

Fs:x-;e ja -3, -3
(1.6) { s 3 2 s 3 2
X =X, ~ X T =7, -1
le 1 2 m 1 2

Due to (1.,5) this transformation is always reversible:

m m
-y o -y - - -
X, = = 2 X + X u, = = —é-u + U
1 m s m 1 m s m
m m
{4 7) g .._2;,‘-' el _3.."'
\lefy X, = - b4 U. = =~ —% 1
2 m s 2 m ]
m m
- 2 - - 2 -
X, = —/™ X 1, = —
3 m s 3 m s

D=1 ; + u - X P
s 5%; i afm ‘;3‘3 s aﬁs Iz ‘5 m aﬁm
(1.8) .. -
A REANE S EN F AR A

§ 2 Formulation of the problem

e now have to integrate the system of differential equations

2 -
X =1u
8 8
=, -
X =u
m m
(2.1) —13; _ m o
s ‘~ l} s
Xs
— -l -
X =X X
T - i X +m 5 = =
= - 0
g 3 7 S -7 1F)°
m s 8

which belongs to the operator (1.8) under the initial conditions

N~—

B?S(tc) =3’té°), % (%) =¥§1°), P (t,) =‘ﬁ£°), and T _(t_) =ﬁ§1°



which are to be calculated from the initial conditions ;;(to)‘and
Gi(to) for i = 1, 2, 3 according to the formulas (1.6).
The solution can be easily obtained by Lie series:

If f(t) is an arbitrary function holomorphic in the neighborhood

-

of t = to of the twelve sought components of the vectors ;:, X0 Uy

andiam, then the Lie series

(2.2)  £(t) = e(t-t°)Df (o) =}: (t o) [D f}( °)

W =0
holds.

The superscript zero denotes that after application of the operator

-y -t

D instead of the variable components of'§é, X 5 and'ﬁm the com~

(o) =(o) =(0)

y Uy 7 and u

®y B

ponents of the constant initial values §£o),
to substituted. The trajectories are obtained by writing down this
formula for the vectors';s(t) and E;(t) and by analytically continu-
ing the series. In this form, the solutions can, however, not be uscd
for numerical purposcs since the series converge too weakly. (This has
been distinctly shown by J. Kovalevsky in a comparison with the Cowell
method). Hence a transformation is necessary: First, we determine an

approximate orbit which is then corrected by a perturbation calcula-

tion.

Chapter II

Solution of the problem:

5 Sun - Jupiter as an unperturbed two-body problem

1) Splitting of the operator: e shall now split D into two com-

ponents:
(3.1) D = Ds D where
- @ i ~ @
(3.2) Ds =Yy a® T T 3 X5 T
1% 1 3




2) Calculation of ?S(t): The partial operator D out of the total

operator D will solely act, if in the place of functions depending
only on‘;S and ﬁs’ but not depending on §g and Hm’ are substituted
into the final formula (2.2). Thus, we have, for instance,

-

(t-t_)D _ 1(o) (t-t_)D 0
(3.3) ;S(t)={e 0 ;J 216 O)S?‘«j()

-

and the problem visualized by the partial operator DS can be solved
separately. Ve may say: The Variables‘§s and'ﬁs are separated from
E; and'ﬁﬁ since they do not depend on these, - DS is, however, the
operator of the unperturbed two-body problem Sun - Jupiter. We shall

#ive the solution together with the respective numerical data in

Chapter 1II.

§ 4 Construction of the approximative orbit

of the eight satellite of Jupiter

1) Further splitting of the operator: It would be most natural to

split up D in such-a way that its essential part again is the opera-
tor of a two-body problem in this case of the fictive two-~body prob-
lem Jupiter - satellite. Rather voluminous intermediate calculations,
which may be a large source of accumulating rounding errors, are re-
~uired for the determination of the Kepler ellipse as an approximative
orbit (particularly in the reversal of Kepler's equation!). In order
to zvoid these we have decided on calculating with a simpler, although

less accurate approximative orbit.

e shall split the operator

(4.1) D=D +D +aAy

The abdbreviations mean



R *n 20
m m
(4.2)
g a
am = 6m du
m
where
m
2 2
(4.3) c —W
m

—y
The perturbation function 5m has the form

— ~ -~
(4.4) o6 =586 +8
m "1 f17
with
. .2 s 3
) - g m _ 3
: T B N E A
4.4') L » IS
= [2 m2 i«.
3} = 10 ~ T3 Xm
Moy T i
e oo}

-
2) Rough estimation of the order of magnitude of ém:

(a) if;c’g and J;;, respectively, are substituted in the place of

- - .
a end  in the formula

- -3 . o 2\V
A+ 1 « =y o [-3/2Y (280 + 1)
(4.5) =F=—= = (A +73) } \ ] e
rg +'§!3 O v (3‘2 5

-
we obtain for 6m an expansion into o series by means of which the
I

order of magnitude can be estimated more ensily than by means of the

-
expression (4.4') for 6m which contains diffcrences of approximatcly

I
equal orders:
- -~ — RN
- m )* Ax X AX X
(4-6) 6m :—_Li—l}gm“ SI,-?"’ _QSI;;m-*...." ]
T ':Eq{ t '3{'0} . .Xh‘

If we consider the first two terms of the series jointly and observe




that

|3e?sl> 4.95 L cnd 0.05 L<Bc’m(.<o.25 L, we will have in the most unfavo-

rable case

2m L
(47 18, | = —2 |7 |< 12271070 17,

m - . 3 m
I' max x {
S

- . ~
(p) 6 is less favorable to handle. If we transform © in such
fr1 11

a way that the Kepler ellipse relntions cnter the formule as an
approximative orbit we find thet
- i .. “6 "‘3
(4.8) |5, | =ea057i07 177 |as]
m .
; IT max
where A1t = t - tn is the length of the concerned step of calculation.

However, we shall not go into these details.

3) Relative orbit of the sn~tellite with respect to Jupiter

We shall first neglect An in comparison to Dm’ since then also the
variables X and . are separated 1.om x_ and u_. In this way, the

pes A [a
problem represented by the operator Dm may be solved separately. The
resulting approximntive orbit of couse deviates from the true orbit,
owing to (4.7) and (4.8). Ve should note, however, that extremely

unfavorable conditions have been assumed in these estimationssi the

figures in (4.7) and (4.8) will be smaller in general!
The solution of the systems of differential equations

RS —
(%, -

(4.9) {; ,

K ma mnao

with the operator qu - %

i
}
(@]
M

é and with the initial

values



.10 .

e
Licd

(4.10) 7o) §(S) and .EEO) _ (o) ‘ -

for the moment to are obtained in the form of the rather simple

approximative orbit (ellipse)

;ma(t) = |e Xna_} ?cm cos[c(‘b-to)]‘*' —Géo)%Sin[C(t-f,)}
(4.11) :(+ (o)
R(e) = le a l -7{esino (e, )+ 3l cos oo )]

(The additional subscript o is to indicate that these approximative
functions, in difference from the sought exact solutions ;; and Gm of
the original three-body problenm.)

The connection with time t is c¢vident; the reversal of a Xepler

equation is superfluous.

5 Solution of the threc-body problem by means of the

given approximative orbit; perturbation calculus.

1) Transformation of the solution (2.2): WVith the new symbol
(51) D, =D + D

we hove

(t -t )

(5.2) £(s) =S — [ a6l

V=0

v . . '
Expanding <D1 +‘5m) s Ordering according to the positions of ésw’ and
applying the exchange theorem to the Lie scries, one obtains the for-
mula (siehc V. Groebner; Dic Lie-leihen und ihre Anwendungen p. 92,

Formel (12.3e))

>t a
(5.3)  £(8) = £, (8) + 2_ { o) 0% (+)], ar,

which is very important for the subsequent calculations. This formula




-1 -

expresses how the approximative solution fa(t) has to be modified in

order to yield a solution of the original problem, The expression
- o ,
| &P £},
means that AmD“f has to be calculated first, and that then the com=-

-
ponents of x and'z have to be substituted by the components of the

approximative solution x (T) and o a(q).

2) Expansion of the essential terms in the series (5.3): We shall
now substitute the requircd special functions Qm(t) andlzm(t) in the
place of the general functions f(t) in formula (5.3). - In the sub-
sequent numerical computation we shall have to break the corresponding
series and to confine ourselves to the essential terms. 0f course, the
accuracy of the result may be increased to any degree if more terms
are taken into account. In the present instance, the following appro-

ximations may be sufficient:

[F®

]

t
“)ma(t) +{ (t -1) 6 L (r)ar +j -(t—-'—ll—gmn(r)dz’

(5.4) . )
t
- 7 £ -
D (6) =T (%) +{' 6, (T)at + { i—g!i)—fma(’r)d-r
\ o y
with . W =
§ B ) - 3(Xmaéma) s }
a - na — 2 -
(5 5) m 'Xma 3 na lxmg ma
U3 ’;“ 3 -% - zma:]gma -
- {6 - (X =% ).
. }3 ma '2 s mna
lxs Xna ’

Naturally, the formulas (5.4) arc of use only as long as the time
space |t - to‘ ig chosen so small that the further terms of the
series may be neglected according to the required accuracy. (It is
obvious that t may never be outside the region of convergence of the

series.)



6 Estimation of the error due to breaking off the serics

)
1) Region of validity of the formulas (5.4): We know from formuls

(5.4) that it is the solution of the problem (2.1) within a certain
region of the t-plane, Within this region, the solution functions con-
structed by means of formula (5.4) have to satisfy the differential
equations (2.,1)., If ;m(t) and'ﬁm(t) are calculated from (5.4), one

obtains

(6.1) R (4) = = ———2—-F_(+) +5__ (t) + R(x),
T maI

where

(6.2) °

t) 7 (%)

(
2z ol 13 (0

1

+6 (t) -6
I may

(t)

oo
=

We shall make use of this in order to determine the order of magnitude

of the expression R(t). With the abbreviation
- - -
(6.4) F.(8) =% () - 7(s)

where

) t . e i, 1
(6.5) 2() =] (+-1)p (ar + [ ] R(i)diﬁd*

A t
o oL o

*
and with the aid of formula (4.5) ) we obtain

*) The series convergces for S <{ 1, which is certainly ful-
X |
ma

filled in a region where formula (5.3) represents the solutions, when

It ~ tol =1At| is chosen sufficiently small




g 1 T 4
m me ma i _ My > B(Xmai)4¢
"2z e 2Pl T E IS T 2t
(6.6) ,lxma t el mat lXma{ L !xma‘
~i *)
(terms of higher ]
order of |% | ‘
Substitution of (6.4) in (4.6) yields
- - W —
- -z m . 3(x r_-_) _
6. 5 =6 -2 e S g terms of higher
(6.1 oy may [;;!3 A |7 12 g T (order of 1€} ).
s’ L gl -
80 that
-
g - } m2 m -
(6.8) ":R(t)‘,max*’?li(t)l S5t 5 37“=2‘&(t){11{(t)
1% ()] EXOIEN

K(t) varies between
2,107 472 (for large a;;t)and 2.,2°1n77 72 (for small ‘;;l).
By virtue of
P . ( ! s
' | o) [ , =
(6.9) 1E(£)|< —2— DG P B
and with (6.8) we obtain in the most unfavorable case the following

estimate for the order of magnitude of iﬁ(t)!:

(t - & )7K(+)

i

' éma

(6.10 | % | =
) i (t) nax 1 - (% - tO)ZK(t)

£)]

L]
max

This estimate is critical for 1 - (t - to)zK(t) = 0, which means necar
the perijove for |t - tol:5'21 a

e B P 2 A G - - N oy T —— i~y P - i A = e G G e S o W " Gt S A e g v S o — S g . o o ot

iy
| are sufficient in estimating the order of

At

*) The terms linear in
magnitude.




near the apojove for ;t - tofﬁ$ 220 d ’ -
so that, as it was to be expected, the magnitude of the region of
convergence of formula (5.3) depends strongly on the distance between
the two celestial bodies., Formula (5.3) is valid in any case for a

time space of at least 20 days.

In numerically evaluating the formula it will be desirable to chosec
the interval rather long. One hos to be careful, however, not to come
close to the edge of the rcgion of convergence since then the rapid
convergence of the serics, which is desired in practice, will no lon-

ger be given.

2) Residue of the series after the sccond perturbation integralj
choice of proper step length At: The comprehensive deliberations which

have been mnde to estimate the expression

Lo Tt o,
(6.11) E(¢) = F(t) - (e-n)7 (mar= o [ L R () m
t

s \ ma a!
o 0 - :

have shown thot the step length necds never be shorter than 0.3 4 if

the error due to the breaking-off of the series in postulated in one

step of calculation to amount to not more than 5.‘10"11 L in the case

=13 14" in the casc of |1,

of [f&] and to not more than 5.10 0

Moreover, one may conclude that the breaking-off error after the

sccond perturbation integral in first approximation amounts to

£
(6.12) | gp(t)d’tmi-‘fo(t)

t
o}

. b
in the case of Uy and to

o+ ot
e

(6.13) | %E{.(f)dg d’rcviéf)—‘f{t%(t)




- 15 -

s 1
v

in the case of X_. Therefore, thcse guantities may be calculated at

1
5\

*
the end of each step ). After this one may determine the step length

pernissible at the prescribed accuracy.

In practice one will always stay somcwhat below the accuracy limit,
but will calcula*tc several stc of equal length. Only when approaching
this 1limit one will reduce the step length a little (or increase it if
the absolute amounts of the expressions (6.12) and (6.13) have dropped
below some certain value)., If thisris sensibly done by the computer
to deo but to nd]

ugt the length of the first step

J - - T
Obviously, this is of particuler significance for calculation of rocket
trajectorice (when the.r approximmnte course is known, ond when esti-

matiouns according to the ohove pattern cnn be made only for short sec-

tione of the trajectory).

%) Propagation of the breaking-off error in the analytical continu-

5 e . e S R e s A St - A — - B . e P Vet e R M i ver R e e e W e S M A M S e s e L S e e A G g R G fn g YN N e M MR e e O S e e

*) The prosram-controlled SIE fo02 computer at the computing center of
/ 2 1) D

fachen Techrical University ustelly crlculates with 1o decimal pl Cces

only. In this way one can covtoin only the order of magnitude of R. (t)

Fowever, if the solution series .~ro hiosken off after the first pertur—
b@ti~n ntopgrel and if the corres 00L4ing calculations arce carrjed out

Jor (%), onc will obtain 2 or 7 figurcs of the components of R(t)
If in analogy to (6 12) and (6. 19) the oxprcssions

o At
"Go12v) o r(U)ax ’1‘“ R(t)

t

o .

v | E 2

i { 7 ! At -
(5.731) v 11 R(%)ayjac = £ (1)

1% ) -

o0 A

- -

are formed, and if thesc guantitics are aaled as corrections to X

and. U reepectively, one will obtain inproved solutions. A checking

huwin thot after 30 steps the

3 8
resulv for % is exactly che same as that obtained when two pertur-
m

-y
Ve tion integrals wers taken into accourt. The result for um differed

calculation, also to ten digits, he

but inelgnificarily (round’ ng errors), vut the time required for com-
utation was only half as leng! - The same procedure can be made wiih
R(t) if +Le conputation covers morc then 1o digits.




ation of the solutions: The exact result of the analytical continua;’\\\

tion of (5.3) after n steps will be denotcd by anJ throughout this
paregraph. The result involving the brezking-off errors (wc shall not
be concerned with rounding errors ) of the provious calculnting stcps

(brecking-off after the second pcrturbation integral) will be tcrmed

— iy
T

. For the error quantitics

Pn = ¥y " nm
(6.14) ¢
Iq ST L

we obtain the reccurrcnce formulos

o) [Pn< (+®dp, o+ (0 +2)latl a o +5p
6.15

2
La, < (1 + Pn)7c letl po 4+ (1 + Pn)qn_1 +q

n- n

- -
in which P, denotes the amount of the crror in X 2t the n-th step,
due to breasking-off thc serics, an the cmount of the breeking-off

[y
error in the serics for u_ after the n-th step.

-

m m
3 3 2 } 2
pn< 2 |, > 13 1= 1 3} 'Athm
1% -~ % | % ! max
S me ma

(i.e. the maximum of this expression in the time interval of the n-th

step of calculation).

The solution of the rccurrcence formules may be written stroight-
forward, if a good part of the path is computcd with the same step
length hgtl, if the breaking-off errors 51 and ii in the formulas
(6.15) are replaced by their maximum values p and q, and if Pn is

replaced by the maximum P. Thus,




where
. a1
e
(6.17) a
L e
/p -
(6.18)
q -

]

It

(1+P)1¢tﬂ3<1

(1 +2) (1 +77 olath)

(1 +P) (1 -7 clatl)

1
P2 - (1+P)27c2[4tl2

Bi and Yi are the constonts of the general solution of the recurrence

formulas which make thce adaptation to the initial conditions possible.

With p* being tke error of the initial data of our calculation in

|- e i iesom o N R
lxml and q* the error of the initi-l data in ‘um\ we have the rela-

tions

U}

S

1 3 . v 2 \.l
k(0 + p¥)e © - a]

- & —y
*1
= kz'-( + p¥le = 2|
a -
= ky|-(q + ¢*)e " h}

n

It

1

T Z(1 + P)fTolat]

(1+P)(§*+%§t{q*} + D+ p

(1+P)[ﬁczhﬁt{p*+q*] +Qq+q

é 7 Calculation of the perturbation integrals

It would be an awful lot of work to cvaluate generally the integrals

|

=
Fh
TN
-

lv

at,




occurring in (5.3). 7e rather go another way which yields the inte-
grals in question with sufficient accuracy. Ye label the wellkroun

functions

-

(1.2) [ap%(0)], = € ()

*
for the 4 equidistant instants of time )
(7.3) tos to+h, £ +2h, t +3h
where

at 0
(7'4) h = 3 = 3 ’

and with the aid of the differcntinting scheme of the table

2
- g () e, (T) ae (0) Ae (T)
) g (t)  As(t) :

Ate (t)

3

t, +h g, (t +h)  Le,(t +n) ; A7e, (%)

g, (t +h)
t, + 2h ga(to+2h) ﬂgga(to+2h)
t, + 3h g, (t,+3h) g (t +3h)

we replnce the function ga(T) by the Newton interpolation polynomial,
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*) This is arbitrrnry! The functions could ns well be labeled more
finely (in the case of large step lengths this might bc necessary;
naturally, the integral formula (7.6) would then have to be changed).
But since the step length has to be chosen short anyhow in order to
keep the breaking-off errors, low, and since it is evident that few
but finely graded steps involve just as much work as more stcps with
& coarser groding, there is no renson to label the functions more
finely since the errors due to the chosen interpolation do not reach
the amount of the breaking-off errors. This can be demonstrated the
most rapidly by calculating forth ~nd back with different step lengths.




The differcnce 4,g (t ) are defined as

V-1

(7.5) 2%, (5,) = A g (5,40) ~ &7 6 (t)

o

We have then

)(X,+1

t o .

: t=T . 4t 3
'[c ;! ga(r)d‘{ eI lg (t )+ a+24ga(to> -
(1.6) °

- 2 2 - 2x +
B % TEI%TTE%gili ga(to) * (a42)(ah3)(a+4)43 €o (t ) j

When calculating back, it (and also h) has to be taken negative. The

differcnce A g, (t ) are calculcted from their definition (7.5) nlso

in this case.

Chapter ITI

Numerical coaputations:

&8 Compilation of thc special initial valucs and of the
/

formulas for the solution of one operation

1) Initial instant: Timing bogins from Oct. 29, 1958 -~ the Julian

day 2429200.5 - and continucs in days.

2) Relative motion of the sun and Jupiter: tabulation of';g(t):

for the instants

(8.1) t, =t  +vh (v=0,1,2,3) *)

the corresponding values of EV are to be detecrmined by inversion of

the Kepler equation

(8.2) E

#) The step At = 3h can te chosen arbitrarily
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Numerical wvalues:

g = 0.,0484011060 (eccentricity)

(6.35) L = 0.00145021529% a (mean motion)
Vow - 5.645944315 (mean anomaly)

\\toz 0 (calendar day)

The solution of (8.2) with respcct to Ev is most ensily achieved by
iteration of Newton's approximntc formula for sclving equctions:

E - % sin E,r ~nt - M

VI I v
(8.4) By =By - T -goos B

*)

where EvI is a value which approximately satisfies Ig. (8.2), and
E,ry 1s an improved approximntc value. Formula (8.4) has to bc itcrn-

ted until Ev = E satisfies Eq. (8.2) with a given accuracy.

I\
Then, xs(tv) can be calculated from the resulting values of Ev:
0.015676901-4.186636655 sin E,-0.323895551 cos E

(8.5) xs(tv)= ~0.251333487-0.323515939 sin E +5.192722630 cos E 3 L

\o

3) Initial data for the orbit of the moon: Computation is to be

carricd out with the mass numbers of page 3

m o.282532864o'1o'6L3d‘2

2

"

(8.6)

0.2959122080‘10-3L5d—2

=]
]

and with the values for the relative position and the rclative velo-

city of the moon, corresponding to the instant tO:

*) The value of Ev corrcsponding to the prcceding instant tv-1 is

-1
best taken as the initial value o~ Eor (starting from EoI = 5.615994607)




j;o »1859 215874 / 0.0002062301590 "
(8.7) 3% -4 o.co7t237637 41 B0 =% 0.0008942872800 b1~
' {
L 0.0775628%07 } L —o.00033561o4520)

-

4) Approximate orbit for Jupiter's moon: We first calculate

(8.8) c =‘Vi-;7pl%w.

Then, the position of the moon on its approximate orbit at the in-

stants (8.1) is found from the formula:

(8.9) ;;a(tv) ='§éo) cos [p(tv-t )] +'3£0) % sin [c(tv—to)]

o} : i

The velocity of the moon on its approximate orbit must be known only

for the end point t5 =t +Abt of the intervals

—

(8.10)  F,(85) = -2 o oin [oem0) |+ 200D con [otoy-t)].

-

5) Computation of the perturb-. -n integrnls: Now, the functions & n(i}

C»u

and ( (t) must be tabulated for the instants (8.1) from the formulas >.

inm

o .
- tx (ty)-x_ (t,) x_(t) \ i
(6 (4.) = m,|—=2 mo M s M 1el 2 x (%)
jomen 5&\%’8(%)5%(%)!5 ‘XS(‘B\,\}?\‘ :‘c’ma(t‘,)Pd mat v
(8.11) - B N
} n, |a 3% (v,08_ ()
k\ma [ b 2(® = 2 ma, v;‘—
(¢ L™ x_, (£ )1 o
n s({% (5.)% (s )5 (£,))
: 5_:1( )~ { i . 2’ \'] gu . (Xs(tu> -
(b))% () ™ %, (s )-x (s )

- s oy . S o Bt e A A W Sy e - o A G A S A M S e e M S T M e T S ) B n - Y e -
~>

4

Ps

At AP
(O S

hevrAT - ﬁh'{“-,W ongoag thoe ro
1 O cac I

+t. The de-

cons g hordl lucnges The
SI‘ld. o
mputer is, however, very small if this par included
in the calculation, since all the quantities appearing in it had al-

rsady to be prepared for the calculation of 6maa
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With the aid of the differences between these tables, obtained from

(7.5), we are able to calculate the perturbation integrals:

torat )
-~ - 2 H
AR MOESIOICACRE - MCRE ZCMCRE - LI
(¢}
t_+Ab R ,
/ - 1 -
;T (e ea8-0B (1 )dr_(at)zﬁ ()b (a6 ) B ()]
t -
(8.12) °©
t +At( -
o Eorat t) 2 5017 1 132 L]
L @mﬂfjdff(ﬁi) 6fm% +§A§1(t ) b ﬁMl O)+§Z6A Hﬁ‘to)}
o}
t +At( 3 ) \ A
0 t A=) - ,
[ o fa Ot ) G L S et ()] )
o}

6) FPormulas of solution: The perturbation integrals (8.12) are used

to correct the approximate solutions (8.9) and (8.10):

t +At t +At

- (Ot +At 1)3
J (t +Qt) (t+At/+/ (t +At—r)b na (T)d ) ( )T
: o
18.13) i +At t tot
S (° (t_+nt- 0)*
3 (¢ +At)—u NER O (vats —2—,————§ma(r)dv

b t '

(@]

Now, we replace t_ ty td+@f) in all the formulas of §8 and procced
to another operation, using the values of (8.13) instend of those of

(8.7). Again, At can be newly chosen.

7) Precautionary measures taken to avoid unnecessary rounding errors:

Since the SIE 2002 computer of the TH Aachen, with which our numcrical
computations were made, usually cnlcul~tes with no more than 1o digits,

some precautionary measurcs hnd to be trken to eliminate rounding

errors:

*) The contribution of this integral manifcsts itself only with grecat
steps, but the situation is nbout the s~rme as in the foregoing footnote.




a) Prior to c.r computations we reduced the quantity M (and Eo) by
a factor of 27 in order to maintain the ~nonmaly !E.<'1 for some hun-
dred days. Thus, the 1oth digit cannot be lost during the inversion of
the Kepler equation;

b) Instead of to+3h we always calculnted tO+At since h is equal to
é% only within rounding errors so thrt a noticeable error might o~oven»
in the time countings;

c) When calculating solutions from (8.13%), we first determined the

sum of the perturbation integrols and then added the approximate soiu-
tion. In this way, the rounding error of the additions enters the re-

sult only once.

& 9 Results

’

1) Trianl computations mnade so far and expericnce gathered from them:

The following trial calculations were mnde:

a) The first informative computations with different steps (onc step
forward and one step backward) have shown that formule (7.6) is suffi-
ciently accurate and that the step constitent with the considerations
in §6, 2) is approximatcly 1d.

b) 100 steps were crlculated froward and bockward with 4t = 1d. ¥)
This was the most importnnt part of our calculantions since they could

be compared with other results.

J. Kovalevsky pointed out that his 12-digit computations, carried out

by Cowell's method with an IBM 650 computer, tcok lo sec. for each

operation and that the deviations in the coordinates and velocites,

obtained when calculating with (At) = 53 1oo days forward and baclk-

10

-1OL and 100.10 ,

ward (i.e., in 40 operations) were less than 50.10

respectively (unit not given).

*) The relevant section of the table may be scen from the enclosed
table of dota
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Ve obtained the following results by this method:

Jo-digit computation with an SIE 2002 computer took 2 sec. for each

operation (the printing of four lines of data after cach operation,

which was necessary for informetive purposes but could be omitted later,
took 1.6 sec.). When crlculating with the step (At)=1d 1oo days forward
and backward (i.e., in 200 operations), the deviations in the coordinates

and velocitics werc less than 15.10_10 L and 1.2°107 ' 1L d-1, respec-

tively. On the basis of this result and with the aid of the (still very
rough) estimate it could be shown in § 6, 3) that the errors in the
analytic continuation at At=1d accounted for no morc than 50 % of the
values indicated, whereas the remaining deviations were due to the
rounding errors. The ssme computation with At=2d yieldecd deviations in
the coordincotes and velocities of less than 28.10'-10 L and 4.10-11Ld—1,
respectively. The remnining test time was used for informative compu-
tations with grgater steps (3d, 54, 10d). Here, the break-off errors
were elready nggcable. As a result of these computations, we came to

- -
the conclusion that the expressions R\(t) and R(t) might be used for

a correction (cf.§6).

c) Integration was performed from pAt=14d (then 0.8d, 0.64, o.4d)
beyond the ncarest distancc between Jupiter and the moon, and thc time
left was used for backward calculation. The values obtained agein agreed
very well. In order to save time, only twc lines of values were prin-

ted,

d) The modification mentioned in the footnote p. 15 was calulated.
At the same time, the printing commands werec distributed more conve-
niently in order to step the computer for a shorter time. Calculation
and printing took about 2 sec. for one operation so that the printing

process was hardly interrupted.
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2) Influence of errors: Thc results can be falsified in four ways:

a) by calculating with an insufficient number of protective places.
Rounding errors may cause serious errors unless they are smaller than
the break-off errors from the very outset;

b) by using too great steps, If a definite number of terms is used.
the required rapid convergence of series can be achieved only if the
step At is reduced:

c) by successively performing many, sufficiently accurate operaticne
(if At is definitely chosen, the excessively strong propagation of the
break-off error can be elininated only by allowing for further terms
of (5.3). This means, however, that thc break-off error is reduesed
simultaneously. Reduction of the step alone is not very advantageous
since the required number of operations increases simultaneously, cf.
(6.16) f£f.);

d) by inexact tabulation of the functions appearing in the pertur-
bation integrals, which can be avoided either by a more exact tabula-

tion or by reducing the step.

The rounding errors show a random character, whereas the other three
error sources reside in the method; however, they can all be controlled:
in b) by observing the increase of (6.11) and by reducing the step
in times

in ¢) with the aid of the estimate (6.16) which can be improved
since we have always taken the maxima of the absolute values of the
guantities involved;

in d) by calculating forward and backward (random sampling) and,

if necessary, by reducing the step.

Then choosing the step j\t, it is necessary that conflicting require-

ments be compensated:
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Results of given accuracy are to be obtained with the greatest possible
step and the least possible number of operations. The modification
mentioned in 9’6 is very helpful in this respect, since it makes it
possible to allow for the essential part of the rests of series with-
out determining the required perturbation integrals. Finally, it should
be stressed that we have dealt only with a special example and that

our method can also be used for the numerical solution of general many-
body problems. The elaboration of our method is still under way, and we ,

hope that we shall soon be able toc achieve even better results.

Notes on the table of data

Since the data were originally printed only for the purpose of obtai-
ning information on the efficiency of our method, we expressed the
numbers in the way they were stored in the computer. The comma was
omitted. The last two figures of each numer are the so-called charac-
teristics of the values represented as floating-point numbers (charac-
teristic = exponent + 50; the point of the computer is put behind the
sign). The decimal numer +o0.7, for example, corresponds to the floa-
ting-point number + 700 000 000 050. Another disadvantage of the tables
is that the printed numerical values are not clearly arranged. After
each operation the values were printed in the following four-~line

arrangement (dimensions are given in brackets):

-

time t g_d‘i,, step At [d}, components of .;c)m(t) [Lj, l;c"m(t)* \__Lj

components of<ﬁ;(t) (v a7

-

components oflﬁﬁ(t) [L d-Q}, Yﬁs(t)l i} d-2]

— * 3 1 . -
components of xs(t) LLJ, gxs(t)l [Lj
The numbers in the third line give information only on the order of
-5
magnitude of the expression R¢(t) (we calculated only with ten digits

and several digits wverc lost in the course of calculation, especially
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during the determination of the difference between two approximately
equal numbers from formula (6.11)): The first two

characteristic are valid at most, while the other digits are insigni-

ficant.

We do not moiroduce the full table which covers 24 pages., Anyone who
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Table of dats

figures and the

is interested to have a copy should write to the author.

A short summary reads

. r o - g
time Ldj step\d} (;;)x \Xml
0.00000 + 01.,00000 185921387450 201577536050
1400000 + 01.,00000 185711957150 201288442250
. . , .
99.,00000 + 01.00000 129514535750 158151320350
100.,00000 + 01.00000 128523%006850 157550010150
99.c0000 - 01,00000 126514535750 158151320350
0,00000 ~ 0l.00000 185921386050 201577534650




